Enriched Environment Shortens the Duration of Action Potentials in Cerebellar Granule Cells
نویسندگان
چکیده
منابع مشابه
Synaptic activation of Ca2+ action potentials in immature rat cerebellar granule cells in situ.
Although numerous Ca2+ channels have been identified in cerebellar granule cells, their role in regulating excitability remained unclear. We therefore investigated the excitable response in granule cells using whole cell patch-clamp recordings in acute rat cerebellar slices throughout the time of development (P4-P21, n = 183), with the aim of identifying the role of Ca2+ channels and their acti...
متن کاملFHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon
Neurons in vertebrate central nervous systems initiate and conduct sodium action potentials in distinct subcellular compartments that differ architecturally and electrically. Here, we report several unanticipated passive and active properties of the cerebellar granule cell's unmyelinated axon. Whereas spike initiation at the axon initial segment relies on sodium channel (Nav)-associated fibrobl...
متن کاملCerebellar Granule Cells in Vitro
The behavior of granule cells in mature cerebellar cultures derived from newborn mice was studied by light and electron microscopy. Many granule cells remained in the explants as an external granular layer. These cells were differentiated, as evidenced by formation of bundles of parallel fibers and by development of synapses between granule cell axons and Purkinje cell branchlet spines, and bet...
متن کاملIonic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current.
Although substantial knowledge has been accumulated on cerebellar granule cell voltage-dependent currents, their role in regulating electroresponsiveness has remained speculative. In this paper, we have used patch-clamp recording techniques in acute slice preparations to investigate the ionic basis of electroresponsiveness of rat cerebellar granule cells at a mature developmental stage. The gra...
متن کاملBDNF stimulates migration of cerebellar granule cells.
During development of the nervous system, neural progenitors arise in proliferative zones, then exit the cell cycle and migrate away from these zones. Here we show that migration of cerebellar granule cells out of their proliferative zone, the external granule cell layer (EGL), is impaired in Bdnf(-/-) mice. The reason for impaired migration is that BDNF directly and acutely stimulates granule ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Cellular Neuroscience
سال: 2019
ISSN: 1662-5102
DOI: 10.3389/fncel.2019.00289